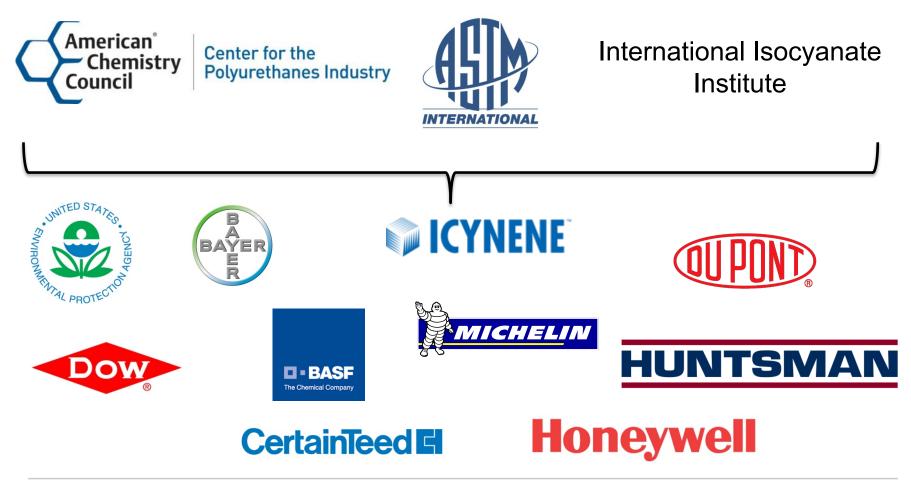


## Harmonising Analysis of VOCs from Spray Polyurethane Foam Insulation

Caroline Widdowson, BSc, PhD, MRSC






A company of the SCHAUENBURG International Group

## Measuring Emissions from Spray Polyurethane Foam (SPF) Insulation

ASTM D22.05 Indoor Air





### What is SPF

### A Side

The "A" side is commonly a mixture of **methylene diphenyl diisocyanate** (MDI) and polymeric methylene diphenyl diisocyanate (pMDI).



### **B** Side

**Polyols** are a building block of polyurethane and react with MDI to make foam.

**Catalysts** speed up the chemical reaction.

Blowing Agents help the foam expand.

Flame Retardants increase the fire resistance of the finished Product.



### **ASTM D22.05 on Indoor Air Standards**

### **Chamber Testing**

- ASTM D5116-10 Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions From Indoor Materials/Products
- ASTM D6670-13 Standard Practice for Full-Scale Chamber Determination of Volatile Organic Emissions from Indoor Materials/Products
- ASTM D7706-11 Standard Practice for Rapid Screening of VOC Emissions from Products Using Micro-Scale Chambers

#### **Analytical Determinations**

- ASTM D5197-09e1 Standard Test Method for Determination of Formaldehyde and Other Carbonyl Compounds in Air (Active Sampler Methodology)
- D6196-03(2009) Standard Practice for Selection of Sorbents, Sampling, and Thermal Desorption Analysis Procedures for Volatile Organic Compounds in Air





## **ASTM Standards and Work Items**

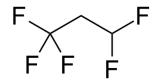
### Work Item WK40293

 Test Method for Determination of Vapor-Phase Organic Compounds Emitted from Spray Polyurethane Foam (SPF) using Micro-Scale Environmental Test Chambers

### Work Item WK43872

 Test Method for Determination of Emissions of Methylene diphenyl diisocyanate (MDI) from Spray Polyurethane Foam (SPF) Insulation using Emission Cells or Micro-Scale Environmental Test Chambers




 Standard Method for Measuring Chemical Emissions from Spray Polyurethane Foam (SPF) in a Large-Scale Spray Booth





## **Spray Polyurethane Foam**

MARKES international



| Target Compound                          | Acronym | Description          | 0                                               |
|------------------------------------------|---------|----------------------|-------------------------------------------------|
| HFC-245fa                                | -       | <b>Blowing Agent</b> |                                                 |
| Tris-(1-chloro-2-propyl)<br>phosphate    | TCPP    | Flame<br>Retardant   | <ul> <li>○ 0-P-0 </li> <li>○ 1</li> </ul>       |
| Bis (2-Dimethylaminoethyl)<br>ether      |         | Catalyst             | CI                                              |
| Tetramethyliminobispropyl amine          | TMIBPA  | Catalyst             |                                                 |
| Pentamethyldiethylene<br>triamine        | PMDTA   | Catalyst             | H <sub>3</sub> C <sub>N</sub> O CH <sub>3</sub> |
| Bis (dimethylaminopropyl)<br>methylamine | DAPA    | Catalyst             | ĊH <sub>3</sub> ĊH <sub>3</sub>                 |
| Methylene diphenyl<br>diisocyanate       | MDI     | Isocyanate           |                                                 |
| O C N C                                  | 0       | `N^<br>              |                                                 |

## **Evaluation of TD-GC/MS Method**

### Instrumentation

### **TD-100 &**

160 °C Flow path temperature: Sorbent Tube: Tenax TA and Carbopack X sorbent tubes (Stainless Steel) Cold Trap: U-T12ME-2S, Materials Emissions Trap with Tenax and Carbograph

**5TD** sorbent

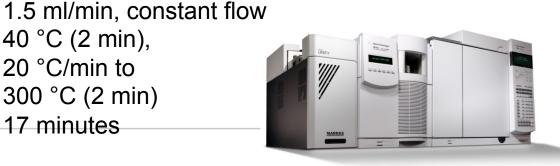
40 °C (2 min),

300 °C (2 min)

20 °C/min to

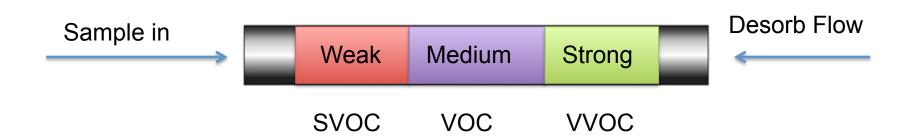
17 minutes




### Agilent 7890 GC and 5975 MSD

Column:

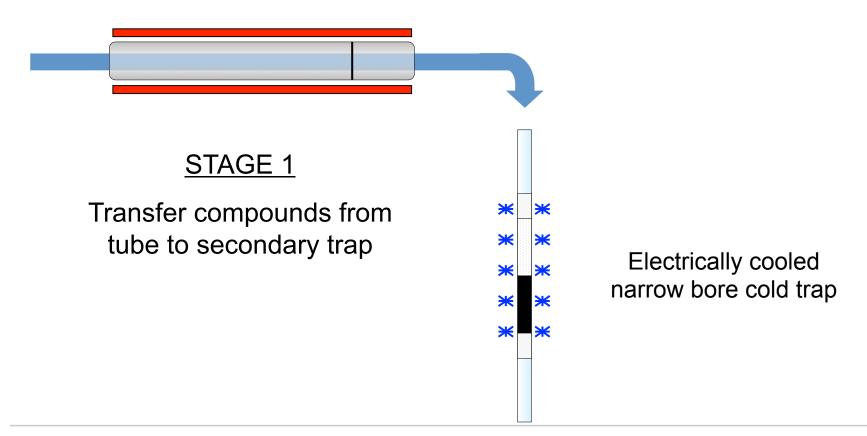
Based deactivated 5% diphenyl/95% dimethyl polysiloxane, 30 m, 0.25 mm x 0.5 µm


Column flow: Temperature program:

Total run time:



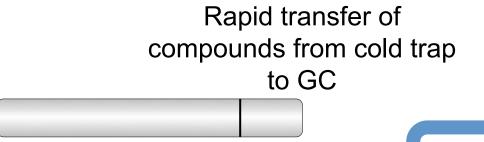
### **Multibed Sorbent Tube**


Enables wide volatility range

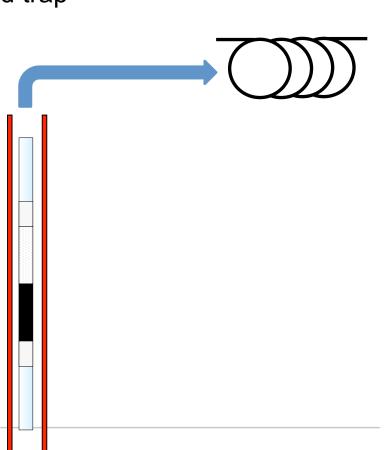




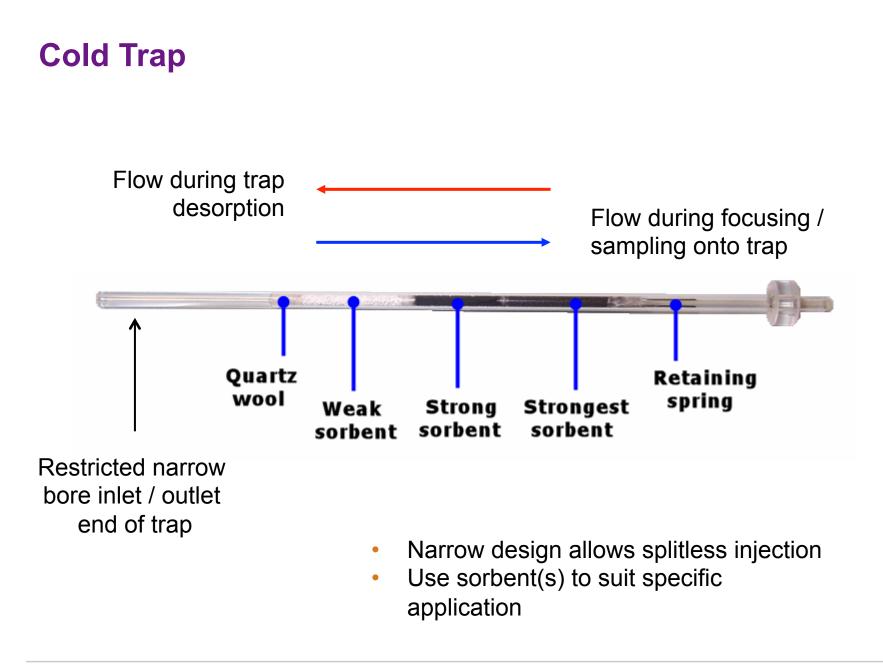
### **2 Stage Thermal Desorption**


SOLUTION: Use a narrow secondary trap





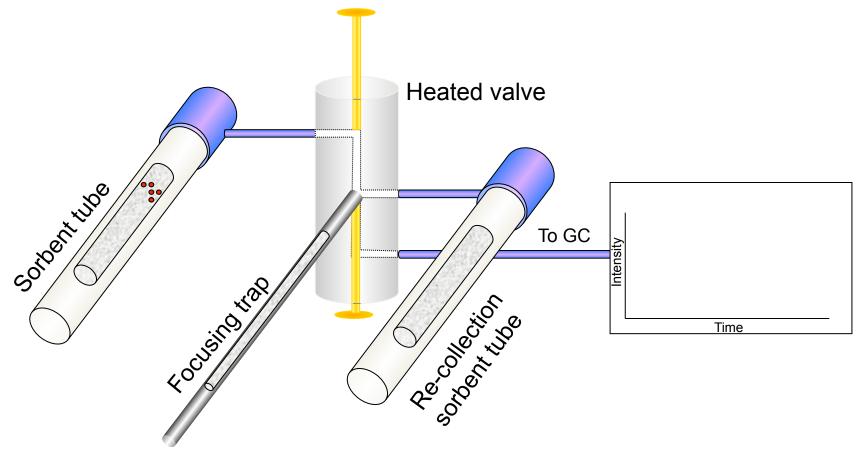

## **2 Stage Thermal Desorption**


### STAGE 2



- Cold trap heated rapidly (100°C/ sec) for sharp chromatographic peaks
- Backflush of cold trap for greater volatility range

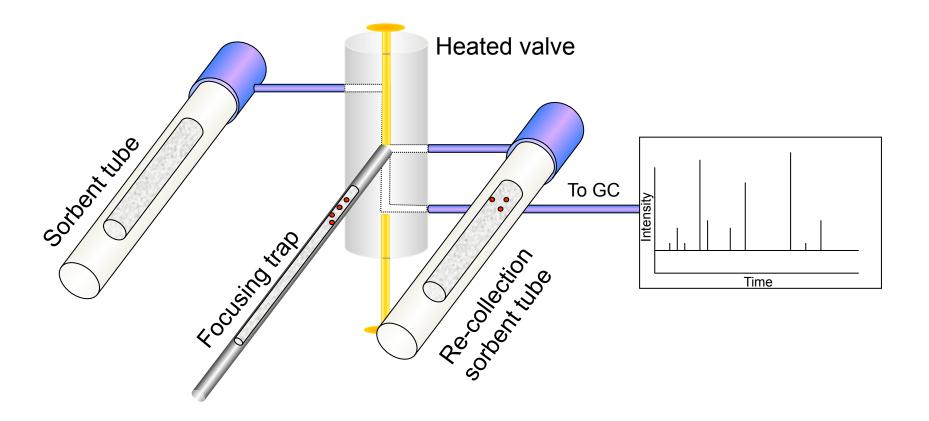









## 2-stage desorption using 'universal' TD valve:


Stage 1: Primary (tube) desorption with optional (inlet) split



- Heated TD valve is inert and low volume: Allows quantitative recovery of high & low volatility compounds and reactive species
- The heated valve also isolates the TD system allowing: leak testing, backflush trap desorption, purge to vent, sample overlap, *etc*.

## 2-stage desorption using 'universal' TD valve:

Stage 2: Secondary (trap) desorption with optional (outlet) split



- Repeat analysis of re-collected samples makes it easy to validate analyte recovery through the TD flow path
- A change to the overall VOC profile indicates any bias

## **Spraying Generic Closed-Cell SPF**





Applicator is shown on left and spraying equipment shown on right.



### Sample preparation: Sample holding time, packaging and storage studies

Sample substrate consists of cardboard sheets wrapped with clean aluminum foil.



Samples stored in polyethylene terephthalate (PET) layered bags during holding time study



Five replicate closed-cell SPF samples are shown in the spray booth.





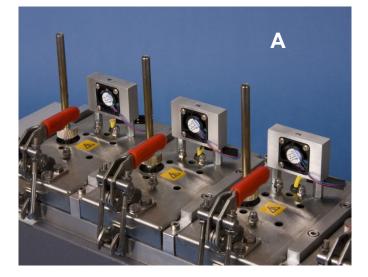
### **Microchamber preparation:** Sample holding time, packaging and storage studies



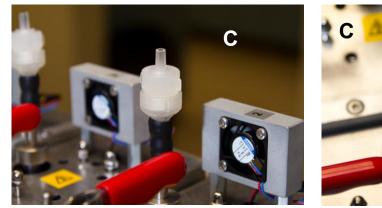






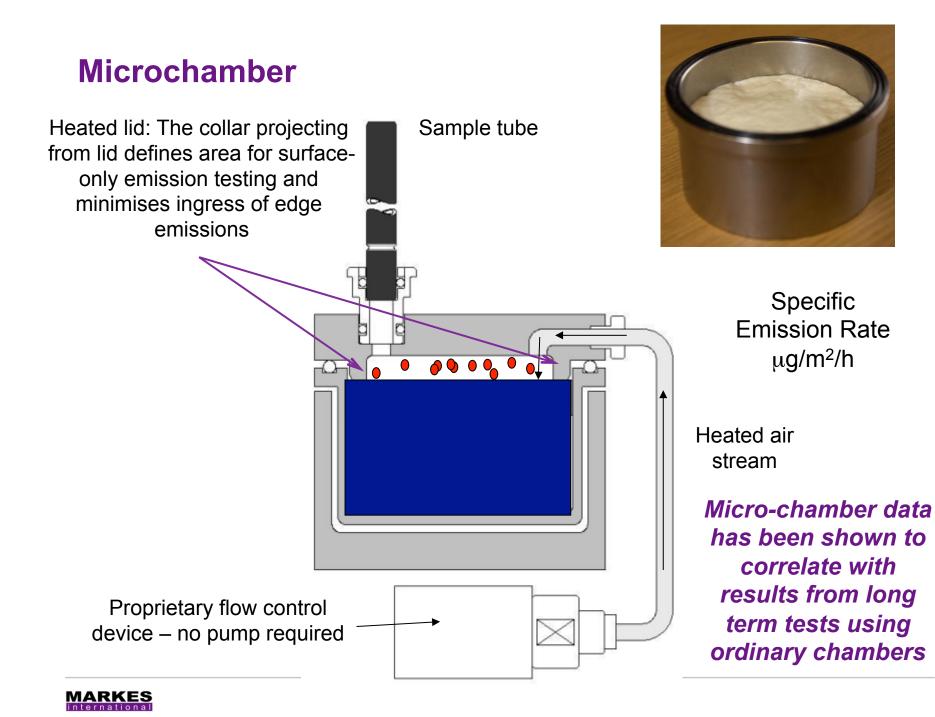



Closed-cell SPF specimen fits tightly into the micro chamber.




# Sample collection techniques : Sample holding time, packaging and storage studies

- A. Standard TD sorbent tubes
- B. Silica gel with DNPH tube for aldehyde analysis
- C. Glass-fiber filter with 1-(2-pyridyl)piperazine (PP) and diethyl phthalate.





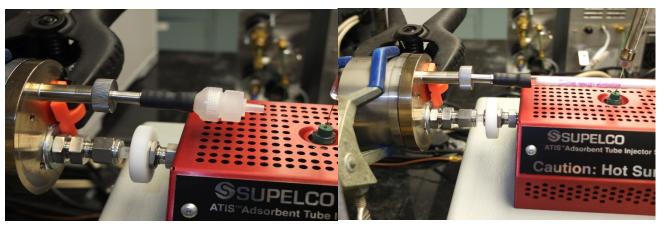




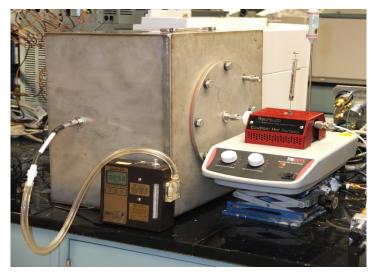




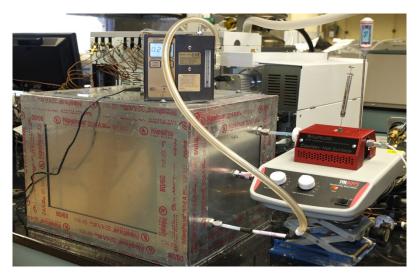

## **Determining Wall effects**


- There is a concern that semi-volatile organic compounds may adhere to the walls of the environmental test chambers, which could significantly bias the emission results.
- The SVOA compounds of interest were spiked into micro chambers and small-scale stainless steel and PTFE lined chambers to evaluate recoveries.

### SVOCs


- MDI
- Selected amine catalysts
- Flame retardant




## **Spiking of chambers**



### Microchambers



**Stainless Steel Chamber** 



PTFE Lined Acrylic Chamber



## **Spiking of chambers**

### MDI

Spike recoveries were not consistent and a significant percentage of the spiked MDI adhered to the chamber walls, regardless of the material and size of the test chamber.

### Amine Catalysts: RT,

- Microchamber (stainless steal) 81 to 99% recovery
- PTFE 10-45% recovery
- Stainless steel 4-22% recovery

### Flame retardants:

- RT, 22% RH (except MCTE) Nitrogen gas, minimal recovery from any chamber.
- When the MCTE was increased to ~35%RH excellent recovery was observed.



## **ASTM Standards and Work Items**

### ASTM D7859-13e1

Standard Practice for Spraying, Sampling, Packaging, and Test Specimen Preparation of Spray Polyurethane Foam (SPF) Insulation for Testing of Emissions Using Environmental Chambers





## **SPF Objectives**

- Compare Chamber size
- Compare temperature
- What time should the samples be collected
- Relative humidity
- Chamber Material
- Flow rate



### **Specimens for Chamber Testing**

### **Micro-Scale Chambers**

 Specimens cut to fit tightly into 114-cc microscale chambers



- Specimens cut to fit tightly into steel sample holders
  - 13x13x6-cm for closed-cell
  - 13x13x9-cm for open-cell
- Placed into 36-L electro-polished small-scale chambers









## **Chamber Parameters**

| Chamber Parameter             | Units  | Micro-Scale<br>Chamber | Small-Scale<br>Chamber |
|-------------------------------|--------|------------------------|------------------------|
| Flow Rate                     | mL/min | 50 ±2                  | 300                    |
| Sampling Rate, cc/min         | mL/min | Same as flow rate      | 100                    |
| Chamber Headspace<br>Volume   | m³     | 0.0000161              | 0.0345                 |
| Loading Factor (L)            | m²/m³  | 200                    | 0.490                  |
| Air Change Rate (N)           | h⁻¹    | 188                    | 0.522                  |
| Area Specific Flow Rate (N/L) | m/hr   | 0.938                  | 1.07                   |
| Relative Humidity             | %      | <1                     | <1                     |
| Sample Area                   | m²     | 0.00322                | 0.0169                 |



### **Analytical Determinations**

- Emissions samples collected periodically from days 0 to 20.
- Aldehydes
  - ASTM D5197
  - DNPH tubes and HPLC
- VOCs and Flame Retardant
  - EPA TO-17 and ISO 16000 Part 6
  - Thermal Desorption GC/MS









## **Target Compounds for this Study**

| Target Compound List                  | Acronym | CAS Number | Description                      |
|---------------------------------------|---------|------------|----------------------------------|
| HFC-245fa                             | -       | 460-73-1   | Blowing Agent                    |
| Bis (2-Dimethylaminoethyl) ether      | BDMAEE  | 3033-62-3  | Catalyst                         |
| Tetramethyliminobispropylamine        | TMIBPA  | 6711-48-4  | Catalyst                         |
| N,N,N-Trimethylaminoethylethanolamine | TMAEEA  | 2212-32-0  | Catalyst                         |
| Bis (dimethylaminopropyl) methylamine | DAPA    | 3855-32-1  | Catalyst                         |
| Tris-(1-chloro-2-propyl) phosphate    | TCPP    | 13674-84-5 | Flame Retardant                  |
| Formaldehyde                          | -       | 50-00-0    | Aldehyde<br>(not in formulation) |
| Acetaldehyde                          | -       | 75-07-0    | Aldehyde<br>(not in formulation) |
| Propionaldehyde                       | -       | 123-38-6   | Aldehyde<br>(not in formulation) |

Isocyanates (MDI) not evaluated since specialized chambers are necessary.



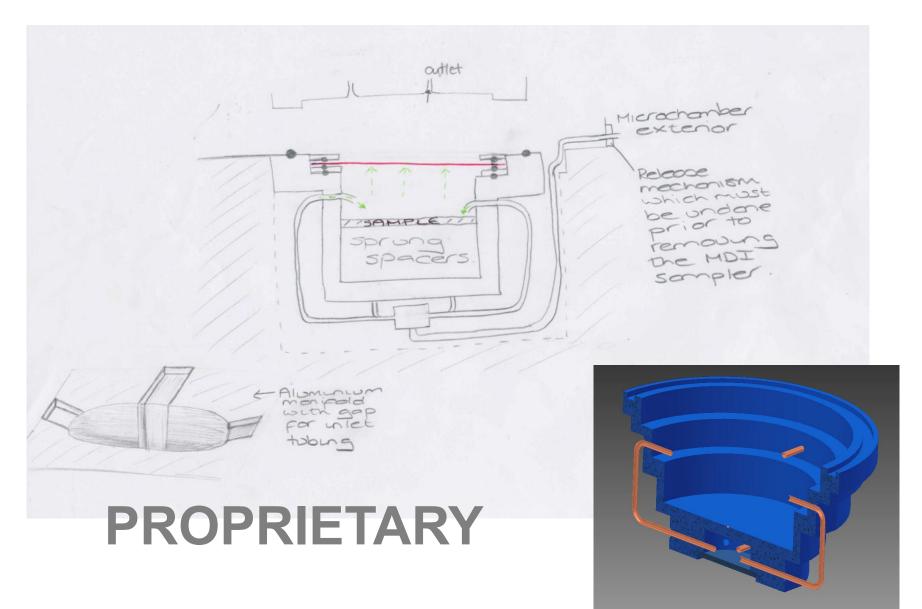
### **Microchamber Parameters**

| Parameter                    | Set Point                                                                |  |
|------------------------------|--------------------------------------------------------------------------|--|
| Temperature                  | 35 C                                                                     |  |
| Gas                          | Ultra Zero Air                                                           |  |
| Flow Rate                    | 50 mL/min                                                                |  |
| Humidity                     | 0%                                                                       |  |
| Chamber material             | Deactivated stainless steel                                              |  |
| Chamber volume               | 114mL → 1L ?                                                             |  |
| Depth                        | 28 mm                                                                    |  |
| Skin                         | Sample submitter specifies if skin is to be left on or not, as           |  |
|                              | described in D7859, must be stated in report                             |  |
| Reporting Units              | μg/m² hr <b>AND</b> μg/g hr (SPF mass is the initial mass)               |  |
| Other Reporting Requirements | If SPF has visual shrunk, note and photograph                            |  |
| Blanks                       | Performance Based                                                        |  |
|                              | • Each chamber must be tested once prior to run and have                 |  |
|                              | ND for chemicals of interest                                             |  |
| Number of foams tested       | Minimum of duplicates                                                    |  |
|                              | Sample from same foam okay                                               |  |
| Sample Location              | Not with 3 cm of edge of sample                                          |  |
|                              | Flattest possible                                                        |  |
|                              | <ul> <li>Similar knit lines in each sample if multiple lifts*</li> </ul> |  |

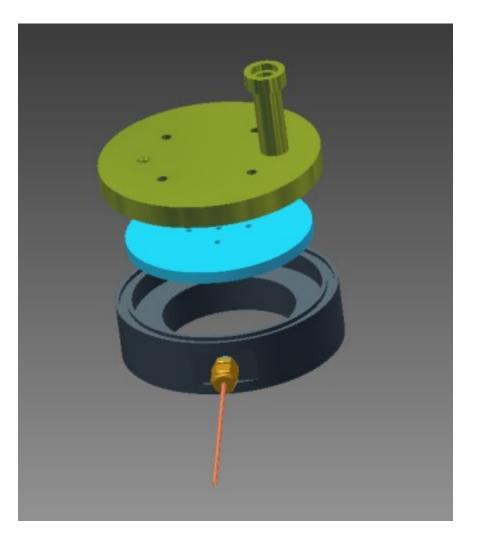


## **Results**

Micro-scale chambers proved to be a useful tool to evaluate SPF insulation for chemical emissions of volatile organic compounds (VOCs).


 After equilibration, the emissions from micro-scale chambers were generally consistent with or slightly higher than small-scale chambers.

SPF samples can be tested in micro-scale chambers at 23°C to 65°C, but elevated temperatures may not simulate real world environments.


- Careful attention to the sample collection time is necessary at elevated temperatures (initial spikes, baking VOCs out).
- For sample comparisons, emissions can be collected after 2 hours in the chamber; approached near steady state conditions after 7 to 14 days.
- Elevated temperature may be useful to enhance detection of potential aldehyde emissions that are not detected at ambient temperature.



# Future plans



## Methyl Diphenyl Isocyanate





### **Acknowledgments**

The research was conducted by the Bayer MaterialScience LLC, Environmental Analytics laboratory, located in Pittsburgh, PA.

Special thanks to John Sebroski of Bayer Material Science and the Center for the Polyurethanes Industry (CPI) of the American Chemistry Council

